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On the relationship between two-body and three-body interactions
from nonequilibrium molecular dynamics simulation
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Nonequilibrium molecular dynamics~NEMD! simulations are performed for argon at different
strain rates using accurate two-body and three-body intermolecular potentials. The contributions of
two- and three-body interactions to the configurational energy of argon at different strain rates are
reported. The NEMD data indicate that there is the same simple relationship between two- and
three-body interactions as reported previously@Marcelli and Sadus, J. Chem. Phys.112, 6382
~2000!# from equilibrium Monte Carlo simulations. The relationship is largely independent of strain
rate. NEMD calculations using this relationship for shear viscosity at different strain rates indicate
good agreement with full two-body1three-body calculations. This means that the effect of
three-body interactions on transport properties might be achieved in a conventional two-body
NEMD simulation without incurring the computational penalty of three-body calculations. ©2001
American Institute of Physics.@DOI: 10.1063/1.1413971#
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I. INTRODUCTION

Despite the considerable increase in computing per
mance and improvements in algorithms in recent deca
molecular simulation1 is typically confined to calculating in
teractions between pairs of molecules. However, genu
pair-potentials such as the BFW2 or Aziz–Slaman3 potentials
are used only rarely. Instead, common practice is to use
effective many-body potential such as the Lennard-Jones
tential. Effective potentials are very useful for coarse gr
simulations but their use can hide subtle intermolecular
fluences. For example, it was recently reported4,5 that the
vapor–liquid equilibria of fluids are significantly influence
by three-body interactions. These important three-body
fects have previously remained undetected because ea
work was confined to effective potentials. It has also be
established4,5 that pair-potentials alone are insufficient f
quantitatively accurate calculations. Instead, to obtain qu
titative agreement with experiment, pair-potentials must
used in conjunction with three-body interactions.

There are many contributions to three-body interactio
but the available evidence5 indicates that the triple-dipole
term of Axilrod and Teller6 alone is an excellent approxima
tion. Nonetheless, the need for three-body calculations
addition to pair calculations represents a considerable c
putational impediment. Recently, Monte Carlo simulatio
have been reported7 which indicate that there is a simple an
accurate relationship between the two-body (E2) and three-
body (E3) configurational energies of a fluid:
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wheren is the nonadditive coefficient,8 e is the characteristic
depth of the pair-potential,s is the characteristic molecula
diameter used in the pair-potential, andr5N/V is the num-
ber density obtained by dividing the number of molecu
~N! by the volume (V). The significance of this relationshi
is that it allows us to obtain an accurate overall intermole
lar potential~u! solely in terms of pair contributions (u2) and
well-known intermolecular parameters:

u5u2S 12
2nr

3es6D . ~2!

Therefore, the effect of three-body interactions can be inc
porated into a simulation involving pair-interactions witho
any additional computational cost. Comparison7 of this ap-
proach with a full two-body plus three-body calculation i
dicates that there is no significant loss of accuracy.

The transport properties of fluids, such as shear visc
ity, is an aspect of fluid behavior that could potentially be
efit from the use of accurate pair-potentials and three-b
interactions. In common with other applications of molecu
simulation, the transport properties of fluids have larg
been investigated using effective potentials, although so
work involving three-body potentials has been reported9–12

for shear viscosity. The aim of this work is to determin
whether Eq.~1! is also valid for fluids far from equilibrium.
In particular, it is of interest to determine the effect of d
ferent strain rates on the validity of Eq.~1!.

II. SIMULATION DETAILS

The details of the simulation have been discussed ex
sively elsewhere.5,11 Therefore, only an outline of the mai
details is given here.
il:
0 © 2001 American Institute of Physics
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A. Intermolecular potentials

For the pair-interactions of argon, we used the Barke
Fisher–Watts~BFW!2 potential, which has the following
functional form:

u2~r !5eF(
i 50

5

Ai~x21! i exp@a~12x!#2(
j 50

2
C2 j 16

d1x2 j 16G .

~3!

In Eq. ~3!, x5r /r m wherer m is the intermolecular separatio
at which the potential has a minimum value and the ot
parameters are obtained by fitting the potential to experim
tal data for molecular beam scattering, second virial coe
cients, and long-range interaction coefficients. The contri
tion from repulsion has an exponential-dependence
intermolecular separation and the contribution to dispers
of theC6 , C8 , andC10 coefficients are included. The value
of these parameters were taken from the literature2 and they
have also been recently summarized elsewhere.7

The contribution from three-body interactions w
evaluated from the triple-dipole potential proposed by Ax
rod and Teller:6

u35
n~113 cosu i cosu j cosuk!

~r i j r ikr jk!3 , ~4!

where n is the nonadditive coefficient, and the angles a
intermolecular separations refer to a triangular configura
of atoms. The nonadditive coefficient for argon~518.3 a.u.!
was taken from the literature.8

B. NEMD simulation details

The NEMD simulations were performed by applying t
standard SLLOD equations of motion for planar shear flow13

using a Gaussian thermostat multiplier to keep the kin
temperature of the fluid constant. In previous work,11,12 such
simulations have been used to report the energy, pres
and shear viscosity. The focus of this work is to determ
the relative contributions to energy of two-body (E2) and
three-body (E3) interactions at different strain rates (ġ), and
to show if this relationship is useful for NEMD simulation

A total system size of 500 atoms was used. The simu
tions were performed in a cubic box and the conventio
periodic boundary conditions1 were applied. For pair interac
tions, long-range corrections were used to recover the
contribution to the intermolecular potential whereas thr
body interactions were assumed to be zero at separa
greater than a quarter of the box length.5 The equations of
motion are integrated by a fourth order Gear predict
corrector scheme14 with a reduced integration time step~t*
5tAe/ms2, m is the mass! of 0.001. A single nonequilib-
rium simulation trajectory is typically run for 250 000 tim
steps. Averages are taken over five independent trajecto
each starting at a new configuration. To equilibrate the s
tem, each trajectory is first run without a shearing field. Af
the shearing field is switched on, the first 50 000 time st
of each trajectory are ignored, and the fluid is allowed
relax to a nonequilibrium steady-state. Therefore, every
ergy datum point represents a total run length of
3200 0005106 time steps. The three-body simulations r
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quire typically 20 and 12 CPU hours on the Fujitsu VPP3
and NEC SX-4/32 supercomputers, respectively. In contr
two-body only simulations under the same conditions, run
least an order of magnitude faster.

III. RESULTS AND DISCUSSION

Equation~1! is a remarkably simple result that allows u
to incorporate the effect of three-body interactions during
pairwise additive simulation. Equation~1! can be applied to
both Monte Carlo and molecular dynamics simulations.
the latter case, the forces between molecules can be ev
ated from the overall intermolecular potential defined by E
~2!. However, prior to this work, the validity of such a simp
relationship for NEMD was uncertain because of the add
influence of factors such as variation in the strain rate.

The ratio of three-body to two-body energies for argon
different reduced densities (r* 5rs3) and reduced tempera
tures~T* 5kT/e, k is Boltzmann’s constant! is shown in Fig.
1 as a function of reduced strain rate (ġ* 5ġsAm/e). The
temperatures and densities represent different state poin
the liquid-phase branch of the vapor–liquid coexisten
curve of pure argon. Irrespective of the state point, it is
parent that the ratio of the energies is largely independen
the strain rate. The dependence of the energy ratio on den
is illustrated in Fig. 2. The values predicted by Eq.~1! are
also illustrated for comparison. This simple relationship fi
the NEMD simulation data with an average absolute dev
tion of 2.3%. This is close to the same quality of agreem
~2%! that was obtained7 for the Monte Carlo study of equi
librium properties.

To test the usefulness of this result, we perform
NEMD simulations for the shear viscosity of argon using E
~2! in conjunction with the BFW two-body potential. Th
reduced shear viscosity (h* 5hs2/Ame), reduced configu-
rational energy (Econf* 5Econf/e) and reduced configurationa
pressure (Pconf* 5Pconfs

3/e) predicted by this relationship a

FIG. 1. The ratio of three-body and two-body energies of argon obtai
from NEMD at different state points and different strain rates.
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different strain rates are illustrated in Fig. 3. In Fig. 3,
comparison is also made with calculations using
BFW1Axilrod–Teller potential.11 It is apparent that, irre-
spective of strain rate, both the shear viscosity and confi
rational energy obtained from the simulations using Eq.~2!
agree very well with the BFW1Axilrod–Teller calculations.
Because the simulations using Eq.~2! do not involve explic-
itly evaluating three-body interactions, they only require t
same amount of computer time as conventional two-b
simulations.

In contrast to the accurate results for shear viscosity
configurational energy, calculations using Eq.~2! underesti-
mated the two-body1three-body configurational pressure b
typically 10%. To investigate the source of this discrepan
we examined the effect of Eq.~2! on the pair-distribution
function of the fluid. It is apparent from Fig. 4 that Eq.~3!
only has a negligible effect on the pair-distribution functi
of the fluid, even at moderate to high strain rates. The tw
body potential contribution to the pressure may be calcula
from g(r ) as

pu
~2!5~2/3!pr2E

0

`

g~r !r 3
]u~2!~r !

]r
dr. ~5!

A comparison of Eq.~5! with the directly calculated pressur
via the standard Irving–Kirkwood expression15 for both the
BFW1Axilrod–Teller potential and Eq.~2! yields excellent
agreement to within the fourth decimal place. Equation~2!
does not adversely affect the pair fluid structure norma
expected from the full BFW1Axilrod–Teller potential.
Therefore, the differences in the pressure results can onl
due to differences in the three-body distribution functions
well as thespatial derivativesof the Axilrod–Teller potential

FIG. 2. The ratio of three-body and two body energies for argon obta
from NEMD at different strain rates@g* 50(s), 0.702~n!, 1.428~h!# as
a function of density. The line through the points was obtained from Eq.~1!.
e

u-

e
y

d

y,

-
d

y

be
s

d

FIG. 3. Comparison of NEMD simulations for the shear viscosity, config
rational energy and configurational pressure of argon using Eq.~2! ~ !
with data from simulations~Ref. 11! involving a full evaluation of
BFW1Axilrod–Teller interactions~d! ~T* 50.95,r* 50.592!. Long-range
corrections have not been included.
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function compared with the corresponding effective thr
body term in Eq.~2!.

IV. CONCLUSIONS

NEMD simulation data indicate that the simple relatio
ship between two-body and three-body energies obta
from Monte Carlo simulations is also valid for shearing sy
tems. The calculations at different strain rates indicate
the relationship is largely independent of strain rate. T
relationship may be used to predict the shear viscosity

FIG. 4. Comparison of the pair-distribution function at different reduc
intermolecular separations (r * 5r /s) obtained using the BFW
1Axilrod–Teller potential~s! and Eq.~2! ~ !. The reduced strain rate i
0.702.
-

d
-
at
s
at

different strain rates. Therefore, Eq.~2! is a reasonable ap
proximation to a full two-body1three-body potential and
could be used in NEMD simulations to incorporate the eff
of three-body interactions without the computational cost
a full three-body calculation.
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